Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 989
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38521445

RESUMO

The MARK2 gene, coding microtubule affinity-regulating kinase or serine/threonine protein kinase, is an important modulator in organism microtubule generation and cell polarity. However, its role in the metamorphosis of insects remains unknown. In this study, we found a conserved miRNA, miR-7-5p, which targets MARK2 to participate in the regulation of the larval-pupal metamorphosis in Galeruca daurica. The dual luciferase reporter assay showed that miR-7-5p interacted with the 3' UTR of MARK2 and repressed its expression. The expression profiling of miR-7-5p and MARK2 displayed an opposite trend during the larval-adult development process. In in-vivo experiments, overexpression of miR-7-5p by injecting miR-7-5p agomir in the final instar larvae down-regulated MARK2 and up-regulated main ecdysone signaling pathway genes including E74, E75, ECR, FTZ-F1 and HR3, which was similar to the results from knockdown of MARK2 by RNAi. In contrast, repression of miR-7-5p by injecting miR-7-5p antagomir obtained opposite effects. Notably, both overexpression and repression of miR-7-5p in the final instar larvae caused abnormal molting and high mortality during the larval-pupal transition, and high mortality during the pupal-adult transition. The 20-hydroxyecdysone (20E) injection experiment showed that 20E up-regulated miR-7-5p whereas down-regulated MARK2. This study reveals that the accurate regulation of miRNAs and their target genes is indispensable for insect metamorphosis.


Assuntos
Besouros , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Besouros/genética , Metamorfose Biológica/genética , Ecdisterona/farmacologia , Larva/metabolismo
2.
Front Biosci (Landmark Ed) ; 29(3): 109, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38538266

RESUMO

BACKGROUND: Severe neurological condition like Alzheimer's disease (AD) has a significantly negative impact on families and society, wherein there is no proven cure. As one of the principal active constituents of Achyranthes bidentata Blume, ecdysterone (ECR) has demonstrated antioxidant and cognitive dysfunction improvement effects. Nonetheless, the mechanism underlying the improvement of cognitive dysfunction by ECR remains unclear. This study sought to ascertain whether ECR may allebviate cognitive impairment by reducing oxidative stress via activation of the nuclear factor erythroid-2-related factor-2 (Nrf2) antioxidant system through Akt/GSK3ß pathway. METHODS: In terms of the experimental procedure, we determined the neuroprotective benefits of ECR in vivo via a cognitive impairment model of senescence-accelerated mouse prone 8 (SAMP8), we performed procedures such as behavioral testing, biochemical assaying, Nissl and TUNEL stainings, as well as flow cytometry, immunohistochemistry and western blotting. Furthermore, we investigated the underlying mechanistic action of ECR by activating PC12 cells with ß-amyloid peptide fragment 25-35 (Aß25-35). RESULTS: In vivo studies showed that ECR effectively improved cognitive impairment in SAMP8 via enhancement of learning and memory capabilities, but decreased oxidative stress, apoptosis and neuronal damage in the hippocampus. During the in vitro study, we observed that ECR dose-dependently reduced the oxidative stress and apoptosis that were induced in PC12 cells by Aß25-35. Additionally, the use of Akt inhibitors further established the potential of ECR to control Nrf2 through activation of the Akt/GSK3ß pathway and protect the PC12 cells from Aß25-35 induced damage. CONCLUSIONS: These findings offer proof that ECR reduces cognitive impairment by triggering the Nrf2 antioxidant system via the Akt/GSK3ß pathway and offer fresh information on ECR's potential as a promising therapeutic development candidate for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Humanos , Ratos , Camundongos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Antioxidantes/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ecdisterona/farmacologia , Ecdisterona/uso terapêutico , Estresse Oxidativo , Transdução de Sinais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
Arch Insect Biochem Physiol ; 115(2): e22089, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409869

RESUMO

Insecticide mode of action studies provide insights into how new insecticidal actives function and contribute to assessing safety to humans and nontarget organisms. Insect cell lines that express potential target sites can serve as valuable tools in this effort. In this paper, we report on the influence of two signaling molecules on protein expression in a nervous system cell line established from Spodoptera frugiperda (Bayer/BCIRL-SfNS2-0714-TR). We selected this line because we established it in our laboratory and we are experienced in using it. Cells were exposed to the insect developmental hormone (1 µg/mL 20-hydroxyecdysone, 20E) and/or a cyclooxygenase (COX) inhibitor (25 µM indomethacin, INDO; inhibits prostaglandin [PG] biosynthesis) for 24 h (Day 2), 72 h (Day 4), or 120 h (Day 6). We selected a PG biosynthesis inhibitor because PGs act in many aspects of insect biology, such as embryonic development, immunity, and protein phosphorylation. We selected the developmental hormone, 20E, because it also acts in fundamental aspects of insect biology. We identified specific proteins via in silico analysis. Changes in protein expression levels were determined using liquid chromatography-mass spectrometry (MS) + MS-MS. The largest number of changes in protein expression occurred on Day 2. The combination of 20E plus INDO led to 222 differentially expressed proteins, which documents the deep significance of PGs and 20E in insect biology. 20E and, separately, INDO led to changes in 30 proteins each (p value < 0.01; >2X or <0.5X-fold changes). We recorded changes in the expression of 9 or 12 proteins (20E), 10 or 6 proteins (INDO), and 21 or 20 proteins (20E + INDO) on D4 and D6, respectively. While the cell line was established from neuronal tissue, the differentially expressed proteins act in a variety of fundamental cell processes. In this paper, we moved beyond a list of proteins by providing detailed, Gene Ontology term analyses and enrichment, which offers an in-depth understanding of the influence of these treatments on the SfNS2 cells. Because proteins are active components of cell physiology in their roles as enzymes, receptors, elements of signaling transduction pathways, and cellular structures, changes in their expression levels under the influence of signaling molecules provide insights into their function in insect cell physiology.


Assuntos
Ecdisterona , Indometacina , Humanos , Animais , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Spodoptera/metabolismo , Insetos/metabolismo , Linhagem Celular , Hormônios , Sistema Nervoso/metabolismo , Proteínas de Insetos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38193341

RESUMO

Ecdysone-induced protein 93 (E93) is a metamorphic determinant involved in crosstalk between 20-hydroxyecdysone (20E) and juvenile hormone (JH) during the insect molting process. The present study identified the E93 gene from the swimming crab, P. trituberculatus, and found it was widely distributed in adult tissues. PtE93 mRNA levels in Y-organ and epidermis fluctuated during the molt cycle, suggesting its involvement in juvenile molting. In vitro and in vivo treatments with 20E led to an induction of PtE93 expression in Y-organ and epidermis, while we found the opposite effect for methyl farnesoate (MF) treatments, a crustacean equivalent of insect JH. We also observed that two genes for ecdysteroid biosynthesis, Spook (Spo) and Shadow (Sad), were suppressed by 20E and induced by MF, showing a negative correlation between PtE93 and ecdysteroid biosynthesis. PtE93 RNA interference (RNAi) induced Spo and Sad expression levels, elevated ecdysteroid content in culture medium, and relieved the 20E inhibitory effect on ecdysteroid synthesis, indicating an inhibitory role of PtE93 on ecdysteroid synthesis. Overall, our results suggest that E93 may be involved in the crosstalk between 20E and MF during crustacean molting, and its presence in Y-organ is closely related to ecdysteroid synthesis.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Ecdisteroides , Ecdisterona/farmacologia , Hormônios Juvenis
5.
BMC Genomics ; 25(1): 35, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183039

RESUMO

BACKGROUND: Macrobrachium nipponense is a freshwater prawn of economic importance in China. Its reproductive molt is crucial for seedling rearing and directly impacts the industry's economic efficiency. 20-hydroxyecdysone (20E) controls various physiological behaviors in crustaceans, among which is the initiation of molt. Previous studies have shown that 20E plays a vital role in regulating molt and oviposition in M. nipponense. However, research on the molecular mechanisms underlying the reproductive molt and role of 20E in M. nipponense is still limited. RESULTS: A total of 240.24 Gb of data was obtained from 18 tissue samples by transcriptome sequencing, with > 6 Gb of clean reads per sample. The efficiency of comparison with the reference transcriptome ranged from 87.05 to 92.48%. A total of 2532 differentially expressed genes (DEGs) were identified. Eighty-seven DEGs associated with molt or 20E were screened in the transcriptomes of the different tissues sampled in both the experimental and control groups. The reliability of the RNA sequencing data was confirmed using Quantitative Real-Time PCR. The expression levels of the eight strong candidate genes showed significant variation at the different stages of molt. CONCLUSION: This study established the first transcriptome library for the different tissues of M. nipponense in response to 20E and demonstrated the dominant role of 20E in the molting process of this species. The discovery of a large number of 20E-regulated strong candidate DEGs further confirms the extensive regulatory role of 20E and provides a foundation for the deeper understanding of its molecular regulatory mechanisms.


Assuntos
Palaemonidae , Transcriptoma , Feminino , Animais , Ecdisterona/farmacologia , Palaemonidae/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica
6.
Arch Insect Biochem Physiol ; 115(1): e22076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288490

RESUMO

In the present study, we tried to clarify when and how pupal commitment (PT) better to use PC occurs and what is involved in the PT of Bombyx mori. To clarify this, we examined the responsiveness of a wing disc to ecdysone, referring to metamorphosis-related BR-C, development-related Myc and Wnt, and chromatin remodeling-related genes at around the predicted PT stage of the Bombyx wing disc. Wing disc responsiveness to juvenile hormone (JH) and ecdysone was examined using Methoprene and 20-hydroxyecdysone (20E) in vitro. The body weight of B. mori increased after the last larval ecdysis, peaked at Day 5 of the fifth larval instar (D5L5), and then decreased. The responsiveness of the wing disc to JH decreased after the last larval ecdysis up to D3L5. Bmbr-c (the Broad Complex of B. mori) showed enhanced expression in D4L5 wing discs with 20E treatment. Some chromatin remodeler and histone modifier genes (Bmsnr1, Bmutx, and Bmtip60) showed upregulation after being cultured with 20E in D4L5 wing discs. A low concentration of 20E is suggested to induce responsiveness to 20E in D4L5 wing discs. Bmbr-c, Bmsnr1, Bmutx, and Bmtip60 were upregulated after being cultured with a low concentration of 20E in D4L5 wing discs. The expression of Bmmyc and Bmwnt1 did not show a change after being cultured with or without 20E in D4L5 wing discs, while enhanced expression was observed with 20E in D5L5 wing discs. From the present results, we concluded that PT of the wing disc of B. mori occurred beginning on D4L5 with the secretion of low concentrations of ecdysteroids. Bmsnr1, Bmutx, Bmtip60, and BR-C are also involved.


Assuntos
Bombyx , Ecdisona , Animais , Bombyx/metabolismo , Montagem e Desmontagem da Cromatina , Pupa/genética , Pupa/metabolismo , Código das Histonas , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Metamorfose Biológica/fisiologia , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/genética , Larva/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento
7.
Ars pharm ; 64(4): 376-384, oct.-dic. 2023.
Artigo em Espanhol | IBECS | ID: ibc-225996

RESUMO

Introducción: Los ecdiesteroides presentan cualidades únicas dentro del reino vegetal y animal. Su similitud a esteroides endógenos de mamíferos les otorga actividad biológica sobre el tejido muscular esquelético. Sin embargo, su mecanismo de acción está por definirse en su totalidad. Método: Se realizó una revisión narrativa utilizando la evidencia científica más relevante. Se consultaron de las bases de datos Medline, Google Scholar, Scielo y Wiley, incluyéndose y excluyéndose trabajos acordes a los criterios del autor. Resultados: La actividad de los ecdiesteroides, principalmente de la Ecdisterona (Ec), podría deberse a la interacción con Mas, receptor acoplado a proteína-G transmembrana (GPCR), y la posterior activación del receptor de estrógenos β (ER β) no nuclear. Dicho mecanismo de acción induce la activación de la ruta alternativa del Sistema Renina-Angiotensina-Aldosterona (RAA) aboliendo los mecanismos de degradación muscular y, mediante la activación indirecta de Erβ, se suprime la expresión del gen de la miostatina. Esta actividad biológica pudiera conferir a los ecdiesteroides propiedades farmacológicas óptimas para impedir la degradación proteico-muscular, tales como la regeneración y reparación del tejido. Conclusiones: Ec ha demostrado poseer propiedades farmacológicas interesantes para el abordaje alternativo de patologías musculodegenerativas por sus efectos anticatabólicos. Aunque prosigue la investigación para su implementación en la clínica, esta siendo utilizada en la industria deportiva y en ensayos para el tratamiento de diferentes patologías. (AU)


Introduction: Ecdysteroids present unique qualities within the plant and animal kingdoms. Their similarity to en-dogenous mammalian steroids allows them to present biological activity on skeletal muscle tissue. However, this molecule’s action mechanism remains to be fully understood. Method: A narrative review was carried out using the most relevant scientific evidence. Different databases such as Medline, Google Scholar, Scielo and Wiley were consulted. Works were included or excluded according to the author ́s criterium. Results: Ecdysteroids’ activity, mostly that of ecdysterone, might be due to the interaction with Mas receptor, a transmembrane G-Protein Coupled Receptor (GPCR), and the subsequent indirect activation of β-Estrogen Recep-tor ́s (β-ER) non-nuclear form. Said action mechanism induces the alternative pathway activation of the Renin-An-giotensin-Aldosterone System (RAAS), abolishing muscular degradation mechanism. Finally, through β-ER activa-tion, the myostatin gene is supressed. This biological activity could provide ecdysteroids optimal pharmacological properties to prevent muscular protein degradation. These include tissue regeneration and repair. Conclusions: Due to its anticatabolic effects, Ec has shown great pharmacological properties that could make it work as an alternative treatment for degenerative muscle pathologies. Although investigations regarding Ec are still in progress, it has already been used by the sports’ industry and in several clinical trials that focus on the treatment of other diseases. (AU)


Assuntos
Humanos , Músculo Esquelético , Ecdisterona/farmacologia , Ecdisterona/efeitos adversos , Receptores de Estrogênio , Hipertrofia , Hormônios Esteroides Gonadais/farmacologia
8.
Environ Sci Pollut Res Int ; 30(60): 126104-126115, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010540

RESUMO

In Daphnia magna, 20-hydroecdysone (20E) is the main molting hormone and its metabolism is of interest to identify new biomarkers of exposure to contaminants. The present study aimed to (i) assess baseline levels of 20E and transcription levels of four related-genes (shade, neverland, ultraspiracle, and ecdysteroid receptor); and (ii) evaluate effects in D. magna after 21 days of exposure to fenarimol (anti-ecdysteroid) and a mixture of gemfibrozil and clofibric acid (lipid-lowering drugs) at sublethal concentrations. Endpoints included transcription of the target genes and quantification of 20E, mortality, and reproduction of daphnids. Baseline results showed that average responses were relatively similar and did not vary more than 2-fold. However, intra-day variation was generally high and could be explained by sampling individuals with slightly different stages of their development. Exposure tests indicated a significant decrease in daphnid reproduction following chronic exposure to a concentration of 565 µg/L of fenarimol. However, no difference was observed between the control and exposed groups for any of the investigated genes, nor for the levels of 20E after 21 days of exposure. Following exposition to gemfibrozil and clofibric acid at 1 µg/L, no changes were observed for the measured parameters. These results suggest that changes in transcription levels of the target genes and concentrations of 20E may not be sensitive endpoints that can be used as biomarkers of sublethal exposure to the target compounds in D. magna. Measuring multiple time points instead of a single measure as well as additional molecular endpoints obtained from transcriptomic and metabolomic studies could afford more insights on the changes occurring in exposed daphnids to lipid-altering compounds and identify efficient biomarkers of sublethal exposure.


Assuntos
Ecdisterona , Poluentes Químicos da Água , Humanos , Animais , Ecdisterona/metabolismo , Ecdisterona/farmacologia , Muda/genética , Genfibrozila/toxicidade , Reprodução , Biomarcadores/metabolismo , Ácido Clofíbrico/metabolismo , Ácido Clofíbrico/farmacologia , Daphnia , Poluentes Químicos da Água/metabolismo
9.
Dokl Biochem Biophys ; 511(1): 162-165, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37833600

RESUMO

It is known that 20-hydroxyecdysone is one of the most important hormonal regulators of development, reproduction and adaptation to unfavorable conditions in insects. Here, we show for the first time that exogenous 20-hydroxyecdysone increases the content of two main insect carbohydrates, trehalose and glucose, in Drosophila melanogaster females both in normal conditions and under short-term heat stress. It is found that the levels of both trehalose and glucose increase after 39 min of heat exposure and return to their original levels after 1.5 h. A scheme of hormonal regulation of carbohydrate content under heat stress, involving 20-hydroxyecdysone, juvenile hormone, and dopamine, is suggested.


Assuntos
Drosophila melanogaster , Ecdisterona , Animais , Feminino , Ecdisterona/farmacologia , Ecdisterona/fisiologia , Trealose/farmacologia , Resposta ao Choque Térmico , Hormônios Juvenis/fisiologia , Glucose
10.
PeerJ ; 11: e15948, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719108

RESUMO

Cyanotis arachnoidea C. B. Clarke is a traditional Chinese medicinal herb that has a limited clinical use in the treatment of diabetes mellitus (DM) in minority areas of Guizhou in China. However, few prior reports are available on the quality control of Cyanotis arachnoidea, and its quality markers and hypoglycemic mechanism are still unclear. The purpose of this study is to explore the quality markers (Q-markers) of Cyanotis arachnoidea and predict its hypoglycemic mechanism. In this study, ultra-high-performance liquid chromatography (UHPLC) fingerprint combined with chemical pattern recognition were performed, and four differential components were screened out as quality markers, including 20-Hydroxyecdysone, 3-O-acetyl-20-hydroxyecdysone, Ajugasterone C, and 2-O-acetyl-20-hydroxyecdysone. Network pharmacology analysis revealed 107 therapeutic target genes of Cyanotis arachnoidea in DM treatment, and the key targets were Akt1, TNF, IL-6, MAPK3, and JUN. The hypoglycemic mode of action of Cyanotis arachnoidea may be mediated by tumor necrosis factor (TNF) signaling, cancer, insulin resistance, and JAK-STAT pathways. Molecular docking analysis disclosed that the foregoing quality markers effectively bound their key target genes. An in vitro experiment conducted on pancreatic islet ß-cells indicated that the forenamed active components of Cyanotis arachnoidea had hypoglycemic efficacy by promoting PI3K/Akt and inhibiting MAPK signaling. UHPLC also accurately quantified the quality markers. The identification and analysis of quality markers for Cyanotis arachnoidea is expected to provide references for the establishment of a quality control evaluation system and clarify the material basis and hypoglycemic mechanisms of this traditional Chinese medicine (TCM).


Assuntos
Commelinaceae , Ecdisterona , Ecdisterona/farmacologia , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Hipoglicemiantes/farmacologia
11.
Cells ; 12(13)2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37443773

RESUMO

Ecdysteroids are crucial in regulating the growth and development of insects. In the fruit fly Drosophila melanogaster, both C27 and C28 ecdysteroids have been identified. While the biosynthetic pathway of the C27 ecdysteroid 20-hydroxyecdysone (20E) from cholesterol is relatively well understood, the biosynthetic pathway of C28 ecdysteroids from C28 or C29 dietary sterols remains unknown. In this study, we found that different dietary sterols (including the C27 sterols cholesterol and 7-dehydrocholesterol, the C28 sterols brassicasterol, campesterol, and ergosterol, and the C29 sterols ß-sitosterol, α-spinasterol, and stigmasterol) differentially affected the expression of 20E biosynthetic genes to varying degrees, but similarly activated 20E primary response gene expression in D. melanogaster Kc cells. We also found that a single dietary sterol was sufficient to support D. melanogaster growth and development. Furthermore, the expression levels of some 20E biosynthetic genes were significantly altered, whereas the expression of 20E signaling primary response genes remained unaffected when flies were reared on lipid-depleted diets supplemented with single sterol types. Overall, our study provided preliminary clues to suggest that the same enzymatic system responsible for the classical C27 ecdysteroid 20E biosynthetic pathway also participated in the conversion of C28 and C29 dietary sterols into C28 ecdysteroids.


Assuntos
Drosophila melanogaster , Esteróis , Animais , Esteróis/metabolismo , Drosophila melanogaster/metabolismo , Ecdisteroides/metabolismo , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Colesterol/metabolismo
12.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511602

RESUMO

Ecdysone signaling in Drosophila remains a popular model for investigating the mechanisms of steroid action in eukaryotes. The ecdysone receptor EcR can effectively bind ecdysone-response elements with or without the presence of a hormone. For years, EcR enhancers were thought to respond to ecdysone via recruiting coactivator complexes, which replace corepressors and stimulate transcription. However, the exact mechanism of transcription activation by ecdysone remains unclear. Here, we present experimental data on 11 various coregulators at ecdysone-responsive loci of Drosophila S2 cells. We describe the regulatory elements where coregulators reside within these loci and assess changes in their binding levels following 20-hydroxyecdysone treatment. In the current study, we detected the presence of some coregulators at the TSSs (active and inactive) and boundaries marked with CP190 rather than enhancers of the ecdysone-responsive loci where EcR binds. We observed minor changes in the coregulators' binding level. Most were present at inducible loci before and after 20-hydroxyecdysone treatment. Our findings suggest that: (1) coregulators can activate a particular TSS operating from some distal region (which could be an enhancer, boundary regulatory region, or inactive TSS); (2) coregulators are not recruited after 20-hydroxyecdysone treatment to the responsive loci; rather, their functional activity changes (shown as an increase in H3K27 acetylation marks generated by CBP/p300/Nejire acetyltransferase). Taken together, our findings imply that the 20-hydroxyecdysone signal enhances the functional activity of coregulators rather than promoting their binding to regulatory regions during the ecdysone response.


Assuntos
Proteínas de Drosophila , Receptores de Esteroides , Animais , Drosophila/genética , Drosophila/metabolismo , Ecdisona , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Ativação Transcricional , Drosophila melanogaster/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo
13.
J Agric Food Chem ; 71(30): 11491-11501, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37478461

RESUMO

Bruceine D (BD) is an effective insecticidal compound found in the Chinese herb Brucea javanica (L.) Merr. BD inhibits the growth and metamorphosis of Plutella xylostella and Drosophila melanogaster; however, its target protein and the molecular mechanism of insecticidal activity remain unclear. In this study, proteins with high affinity for BD were screened using surface plasmon resonance and high-performance liquid chromatography coupled with matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, revealing the ecdysone receptor (EcR) is the main target of BD. In vivo results showed that BD inhibited insect growth and metamorphosis through inhibition of the expression of 20E response genes. In vitro dual luciferase and enhanced green fluorescent protein (EGFP) fluorescence experiments indicated that BD suppressed the transcriptional activation activity of EcR by blocking the ecdysone response element (EcRE)-triggered transcriptional cascade, suggesting that BD inhibits the formation of the 20E-EcR-USP-EcRE complex. Moreover, molecular docking demonstrated that BD bound well to EcR. Elucidating the insecticidal mechanism of BD will be helpful in the development of green pesticides to control pests.


Assuntos
Proteínas de Drosophila , Inseticidas , Animais , Ecdisona/metabolismo , Drosophila melanogaster/metabolismo , Inseticidas/farmacologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Proteínas de Drosophila/metabolismo , Ecdisterona/metabolismo , Ecdisterona/farmacologia
14.
Steroids ; 198: 109262, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37355000

RESUMO

Phytoecdysteroids are active natural compounds that have demonstrated many beneficial pharmacological effects on mammals, including Humans. 20-Hydroxyecdysone (20E) is the major phytoecdysteroid present in plants, and gerbils are particularly good responders to the addition of 20E to their diet. We have examined the oral bioavailability of 20E in the desert gerbil, Gerbillus tarabuli. 20E (5 and 50 mg.kg-1 body weight) was administered to gerbils by intra-peritoneal injection and oral gavage, respectively. Plasma samples were collected over 8 h and analyzed by HPLC-MS/MS to determine the 20E concentrations. The calculated oral bioavailability of 20E is approx. 12%, with a half-life of 30.6 and 33 min after per os administration or intra-peritoneal injection, respectively. This bioavailabilitty is much higher than that observed in laboratory rodents (ca. 1%). It is proposed that this unexpectedly high oral bioavailability of 20E in gerbils contributes to its high efficacy in this animal.


Assuntos
Ecdisterona , Síndrome Metabólica , Animais , Disponibilidade Biológica , Ecdisterona/farmacologia , Gerbillinae/metabolismo , Espectrometria de Massas em Tandem
15.
Integr Comp Biol ; 63(2): 288-303, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37365683

RESUMO

A heterodimeric complex of two nuclear receptors, the ecdysone receptor (ECR) and ultraspiracle (USP), transduces 20-hydroxyecdysone (20E) signaling to modulate insect growth and development. Here, we aimed to determine the relationship between ECR and 20E during larval metamorphosis and also the specific roles of ECR during larval-adult transition in Apis mellifera. We found that ECR gene expression peaked in the 7-day-old larvae, then decreased gradually from the pupae stage. 20E slowly reduced food consumption and then induced starvation, resulting in small-sized adults. In addition, 20E induced ECR expression to regulate larval development time. Double-stranded RNAs (dsRNAs) were prepared using common dsECR as templates. After dsECR injection, larval transition to the pupal stage was delayed, and 80% of the larvae showed prolonged pupation beyond 18 h. Moreover, the mRNA levels of shd, sro, nvd, and spo, and ecdysteroid titers were significantly decreased in ECR RNAi larvae compared with those in GFP RNAi control larvae. ECR RNAi disrupted 20E signaling during larval metamorphosis. We performed rescuing experiments by injecting 20E in ECR RNAi larvae and found that the mRNA levels of ECR, USP, E75, E93, and Br-c were not restored. 20E induced apoptosis in the fat body during larval pupation, while RNAi knockdown of ECR genes reduced apoptosis. We concluded that 20E induced ECR to modulate 20E signaling to promote honeybee pupation. These results assist our understanding of the complicated molecular mechanisms of insect metamorphosis.


Assuntos
Ecdisterona , Receptores de Esteroides , Abelhas/genética , Animais , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Ecdisona/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Metamorfose Biológica/fisiologia , Larva/genética
16.
Cell Rep ; 42(6): 112644, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37310862

RESUMO

Amino acid metabolism is regulated according to nutrient conditions; however, the mechanism is not fully understood. Using the holometabolous insect cotton bollworm (Helicoverpa armigera) as a model, we report that hemolymph metabolites are greatly changed from the feeding larvae to the wandering larvae and to pupae. Arginine, alpha-ketoglutarate (α-KG), and glutamate (Glu) are identified as marker metabolites of feeding larvae, wandering larvae, and pupae, respectively. Arginine level is decreased by 20-hydroxyecdysone (20E) regulation via repression of argininosuccinate synthetase (Ass) expression and upregulation of arginase (Arg) expression during metamorphosis. α-KG is transformed from Glu by glutamate dehydrogenase (GDH) in larval midgut, which is repressed by 20E. The α-KG is then transformed to Glu by GDH-like in pupal fat body, which is upregulated by 20E. Thus, 20E reprogrammed amino acid metabolism during metamorphosis by regulating gene expression in a stage- and tissue-specific manner to support insect metamorphic development.


Assuntos
Ecdisterona , Mariposas , Animais , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Larva/metabolismo , Metamorfose Biológica , Aminoácidos/metabolismo , Proteínas de Insetos/metabolismo
17.
Phytochemistry ; 212: 113710, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178942

RESUMO

Six undescribed C27-phytoecdysteroid derivatives, named superecdysones A-F, and ten known analogs were extracted from the whole plant of Dianthus superbus L. Their structures were identified by extensive spectroscopy, mass spectrometric methods, chemical transformations, chiral HPLC analysis, and the single-crystal X-ray diffraction analysis. Superecdysones A and B possess a tetrahydrofuran ring in the side chain and superecdysones C-E are rare phytoecdysones containing a (R)-lactic acid moiety, whereas superecdysone F is an uncommon B-ring-modified ecdysone. Notably, based on the variable temperature (from 333 K to 253 K) NMR experiments of superecdysone C, the missing carbon signals were visible at 253 K and assigned. The neuroinflammatory bioassay of all compounds were evaluated, and 22-acetyl-2-deoxyecdysone, 2-deoxy-20-hydroxyecdysone, 20-hydroxyecdysone, ecdysterone-22-O-benzoate, 20-hydroxyecdysone-20,22-O-R-ethylidene, and acetonide derivative 20-hydroxyecdysterone-20, 22-acetonide significantly suppressed the LPS-induced nitric oxide generation in microglia cells (BV-2), with IC50 values ranging from 6.9 to 23.0 µM. Structure-activity relationships were also discussed. Molecular docking simulations of the active compounds confirmed the possible mechanism of action against neuroinflammations. Furthermore, none compounds showed cytotoxicity against HepG2 and MCF-7. It is the first report about the occurrence and anti-neuroinflammatory activity of the phytoecdysteroids in the genus Dianthus. Our findings demonstrated that ecdysteroids may be used as potential anti-inflammatory drugs.


Assuntos
Dianthus , Dianthus/química , Ecdisterona/farmacologia , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias , Ecdisteroides/farmacologia
18.
Biomed Pharmacother ; 164: 114899, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37229804

RESUMO

We recently reported that exposure of skin to ultraviolet B (UVB) irradiation for 2 weeks induces stress and accelerates skin aging. Interestingly, aldosterone synthase is known to be crucial in generating UVB-induced stress-related responses, suggesting that drugs that regulate its activity can be used as skin antiaging agents. Through extensive drug screening, we have identified 20-hydroxyecdysone (20E), a steroidal prohormone secreted by the prothoracic glands of insects, as a potent inhibitor of UVB-induced aging. Although 20E has been shown to exert antistress and anti-collagenase effects in vitro, its effects in vivo remain unexplored. Furthermore, the pharmacological and physiological effects of 20E on UVB-mediated photoaging are poorly understood. Therefore, in this study, we investigated the effects of 20E on aldosterone synthase and UVB-induced photoaging and skin lesions in hairless mice, focusing on the stress-related hypothalamic-pituitary-adrenal axis. We confirmed that 20E inhibited aldosterone synthase and reduced corticosterone levels. When applied to a UV-induced skin aging animal model, it ameliorated UV-induced stress and protected against the decrease in collagen levels. Importantly, when the aldosterone synthase inhibitor osilodrostat, an FDA-approved drug, was applied to the UV-induced skin aging model, the stress-reducing and antiaging effects of 20E were not observed. Thus, we conclude that 20E inhibits UVB-induced skin aging by blocking aldosterone synthase and is a potential candidate to prevent skin aging.


Assuntos
Envelhecimento da Pele , Animais , Camundongos , Camundongos Pelados , Ecdisterona/farmacologia , Citocromo P-450 CYP11B2/farmacologia , Sistema Hipotálamo-Hipofisário , Sistema Hipófise-Suprarrenal , Pele , Raios Ultravioleta/efeitos adversos
19.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239932

RESUMO

The plant mirid bug Apolygus lucorum is an omnivorous pest that can cause considerable economic damage. The steroid hormone 20-hydroxyecdysone (20E) is mainly responsible for molting and metamorphosis. The adenosine monophosphate-activated protein kinase (AMPK) is an intracellular energy sensor regulated by 20E, and its activity is regulated allosterically through phosphorylation. It is unknown whether the 20E-regulated insect's molting and gene expression depends on the AMPK phosphorylation. Herein, we cloned the full-length cDNA of the AlAMPK gene in A. lucorum. AlAMPK mRNA was detected at all developmental stages, whereas the dominant expression was in the midgut and, to a lesser extent, in the epidermis and fat body. Treatment with 20E and AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AlCAR) or only AlCAR resulted in activation of AlAMPK phosphorylation levels in the fat body, probed with an antibody directed against AMPK phosphorylated at Thr172, enhancing AlAMPK expression, whereas no phosphorylation occurred with compound C. Compared to compound C, 20E and/or AlCAR increased the molting rate, the fifth instar nymphal weight and shortened the development time of A. lucorum in vitro by inducing the expression of EcR-A, EcR-B, USP, and E75-A. Similarly, the knockdown of AlAMPK by RNAi reduced the molting rate of nymphs, the weight of fifth-instar nymphs and blocked the developmental time and the expression of 20E-related genes. Moreover, as observed by TEM, the thickness of the epidermis of the mirid was significantly increased in 20E and/or AlCAR treatments, molting spaces began to form between the cuticle and epidermal cells, and the molting progress of the mirid was significantly improved. These composite data indicated that AlAMPK, as a phosphorylated form in the 20E pathway, plays an important role in hormonal signaling and, in short, regulating insect molting and metamorphosis by switching its phosphorylation status.


Assuntos
Ecdisterona , Muda , Animais , Muda/fisiologia , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcarnitina/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/metabolismo
20.
BMC Biol ; 21(1): 119, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226192

RESUMO

BACKGROUND: The regulation of glycolysis and autophagy during feeding and metamorphosis in holometabolous insects is a complex process that is not yet fully understood. Insulin regulates glycolysis during the larval feeding stage, allowing the insects to grow and live. However, during metamorphosis, 20-hydroxyecdysone (20E) takes over and regulates programmed cell death (PCD) in larval tissues, leading to degradation and ultimately enabling the insects to transform into adults. The precise mechanism through which these seemingly contradictory processes are coordinated remains unclear and requires further research. To understand the coordination of glycolysis and autophagy during development, we focused our investigation on the role of 20E and insulin in the regulation of phosphoglycerate kinase 1 (PGK1). We examined the glycolytic substrates and products, PGK1 glycolytic activity, and the posttranslational modification of PGK1 during the development of Helicoverpa armigera from feeding to metamorphosis. RESULTS: Our findings suggest that the coordination of glycolysis and autophagy during holometabolous insect development is regulated by a balance between 20E and insulin signaling pathways. Glycolysis and PGK1 expression levels were decreased during metamorphosis under the regulation of 20E. Insulin promoted glycolysis and cell proliferation via PGK1 phosphorylation, while 20E dephosphorylated PGK1 via phosphatase and tensin homolog (PTEN) to repress glycolysis. The phosphorylation of PGK1 at Y194 by insulin and its subsequent promotion of glycolysis and cell proliferation were important for tissue growth and differentiation during the feeding stage. However, during metamorphosis, the acetylation of PGK1 by 20E was key in initiating PCD. Knockdown of phosphorylated PGK1 by RNA interference (RNAi) at the feeding stage led to glycolysis suppression and small pupae. Insulin via histone deacetylase 3 (HDAC3) deacetylated PGK1, whereas 20E via acetyltransferase arrest-defective protein 1 (ARD1) induced PGK1 acetylation at K386 to stimulate PCD. Knockdown of acetylated-PGK1 by RNAi at the metamorphic stages led to PCD repression and delayed pupation. CONCLUSIONS: The posttranslational modification of PGK1 determines its functions in cell proliferation and PCD. Insulin and 20E counteractively regulate PGK1 phosphorylation and acetylation to give it dual functions in cell proliferation and PCD.


Assuntos
Ecdisterona , Insulina , Animais , Ecdisterona/farmacologia , Fosfoglicerato Quinase/genética , Fosforilação , Apoptose , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...